Latest News

Machine Learning to Rule-Out Pulmonary Embolism

Congratulations to Dr Nicholas McCarthy for his recent "Extended D-dimer Cut-offs and Machine Learning for Ruling Out Pulmonary Embolism in individuals undergoing CTPA" publications in the European Respiratory Journal March 2022. Checkout the publication here.

 
075ce32d-0155-4d33-a68b-1c4d8db89039.JPG

Research Collaborations between Ireland and France-based Researchers

In June 2021, Misgina Tsighe Hagos and Niamh Belton, under the supervision of
Prof. Kathleen Curran, were granted Ulysses funding by the Irish Research Council (IRC). Ulysses funding aims to promote research collaborations between Ireland and France-based researchers. We are using the funding to collaborate with the Center for Magnetic Resonance in Biology and Medicine (CRMBM) research group, based in Aix-Marseille. This is a research group that specialises in musculoskeletal medical imaging and have acquired datasets of Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI). These datasets are valuable as measurements of the muscle architecture can be more accurately calculated in 3D space from DTI. Such measurements can provide critical  information on injury risk, injury recovery process, and muscle disorders. Given our skills in Machine Learning and their expertise in musculoskeletal imaging, this collaboration facilitates an exciting opportunity to develop novel machine learning models for automating muscle architecture analysis.
As part of the collaboration, we had the pleasure of hosting Prof. David Bendahan, CNRS research director and leader of the “Magnetic Resonance MSK” group at CRMBM, on a research visit for three days where we exchanged research ideas in November 2021. He also gave an interesting seminar on ‘Segmentation of individual muscles in MR images: How could we handle pathological changes?’. Following this, we travelled to Marseille for four weeks where we met with various members of the research group. We began discussions to define the project and began curating datasets. We are looking forward to the next meeting when the members of CRMBM will travel to Ireland.

 

2021 Virtual Mobility Grant for “Differentiating Between Muscle and Fat Tissue in Zebrafish Using AI” 

2021 Virtual Mobility Grant supported by the COST Action Strategy under the GEnomics of MusculoSkeletal traits Translational NEtwork (GEMSTONE), functional WG2 and WG4. Received under collaboration of Dr. David Karasik, Bar-Ilan University (Host Institution), and Dr. Kathleen Curran, University College Dublin (Home Institution). The grant was used to work on the project “Differentiating Between Muscle and Fat Tissue in Zebrafish Using AI”.

2021 Virtual Mobility Grant for “Accelerating Genetic Screening of Skeletal Conditions Using Zebrafish and AI” 

2021 Virtual Mobility Grant supported by the COST Action Strategy under the GEnomics of MusculoSkeletal traits Translational NEtwork (GEMSTONE), functional WG4. Received under collaboration of Dr. Erika Kague, University of Bristol (Host Institution), and Dr. Kathleen Curran, University College Dublin (Home Institution). The grant was used to further work on the project “Accelerating Genetic Screening of Skeletal Conditions Using Zebrafish and AI”.

We are delighted to welcome our collaborator, Ms. Susan Maguire, to our research group

Ms. Susan Maguire is a Medical Physicist at the Mater Private Hospital. Ms.  Maguire trained in Addenbrookes hospital, Cambridge in the IPEM training program and moved to the Mater Private 16 years ago where she is currently the Chief Physicist in Diagnostic Imaging. Ms. Maguire acts as the hospital's Radiation Protection Advisor and Medical Physics Expert. They cover a wide range of modalities including CT, PET/CT, nuclear medicine, interventional radiology/cardiology, x-ray, mammography as well as MRI and non-ionizing modalities such as lasers, UV, and ultrasound across 7 sites. Ms. Maguire currently lectures on the UCD MSc in Medical Physics course and has supervised a number of projects. Ms. Maguire is also vice president of the Irish College of Physicists in Medicine. The day-to-day work doesn't leave much time for research but she has collaborated with UCD on a number of projects and looks forward to more in the future.

 
JOD_photo.jpg

We are delighted to welcome our collaborator, Dr Jim O'Doherty, to our research group

Dr O'Doherty is a clinical scientist by background, He trained in the UK medical physics program and spent most of my time over the last few years setting up and analyzing clinical trials (on both humans and animals) using MR, PET, CT, and hybrid systems like PET-MR, PET-CT. Dr O'Doherty also worked on the development of new radiotracers for imaging various pathways in cancer (mainly breast and thyroid). Dr O'Doherty does some research in detector physics through designing and simulating new detectors, especially small field of view PET systems, but also a newly released photon-counting CT system (Siemens). Dr O'Doherty is currently working in the USA as an R&D collaborations manager for Siemens, where they develop new imaging techniques and quite a lot of AI postprocessing software (including some at the image acquisition stage) along with their clinical collaborators. Dr O'Doherty has an academic post at the Medical University of South Carolina where he is based.

Screen Shot 2021-11-10 at 16.05.26.png

Congratulations to Yushi Yang on receiving VM grant for implementing AI to automate swimming behaviour analysis of zebrafish for musculoskeletal research

Yushi is collaborating with Kathleen Curran and Erika Kague to develop a deep learning model for tracking a large amount of fish, in order to study their 3D collective behaviour.
Zebrafish have been used in biomedical research to study gene function, identification of targets for therapeutics and to test drugs to modulate diseases. By studying the zebrafish swimming behaviour we are able to study how a gene can affect the musculoskeletal system and the zebrafish vertebral column mobility, similar to gait analysis in human. The key step for the behaviour study is to reconstruct the trajectories of animals. With a recent virtual mobility grant (COST Action: CA18139), Yushi Yang (Physics PhD student in Bristol) is further optimising a novel 3D fish tracking system, by applying deep learning models. The efficiency of the 3D tracking system is expected to get a tenfold increase, enabling fast genetic screenings.

Screenshot 2021-07-26 at 09.48.59.png

Congratulations to Niamh Belton, Ivan Welaratne, Adil Dahlan, Ronan T Hearne, Misgina Tsighe Hagos, Aonghus Lawlor, and Kathleen M. Curran for receiving the best paper and presentation award at MIUA 2021 for their paper titled 'Optimising Knee Injury Detection with Spatial Attention and Validating Localisation Ability'

Linkk to the pp

IRC.png

Congratulations To Our Research Group Members: Niamh Belton and Misgina Tsighe Hagos Upon Receiving Ulyssess Funding

Niamh Belton and Misgina Tsighe Hagos, under the supervision of Prof. Kathleen Curran, Prof. Brian McNamee and Prof. Aonghus Lawlor, have been awarded Ulysses funding from the Irish Research Council to travel to France to collaborate with the CRMBM research group in Aix-Marseille University. The aim of the Ulysses scheme is to foster new collaborations between Ireland- and France-based researchers. The project will focus on using Machine Learning to automate the segmentation of muscles from Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data.

Niamh Belton and Misgina Tsighe Hagos, under the supervision of Prof. Kathleen Curran, Prof. Brian McNamee and Prof. Aonghus Lawlor, have been awarded Ulysses funding from the Irish Research Council to travel to France to collaborate with the CRMBM research group in Aix-Marseille University. The aim of the Ulysses scheme is to foster new collaborations between Ireland- and France-based researchers. The project will focus on using Machine Learning to automate the segmentation of muscles from Magnetic Resonance Imaging (MRI) and Diffusion Tensor Imaging (DTI) data.

Screen Shot 2021-06-29 at 09.35.19.png

MIDL 2021 Publication

Congratulations to Niamh Belton, member of our research group on her latest publication with Dr Kathleen Curran and Aonghus Lawlor.
If you are interested, make sure to attend MIDL 2021, Friday the 9th session at 16:45 (UCT+2) to hear Niamh speak about the paper!

Twitter_Posts_Banner_RT_304-2.png

AI Enhanced DIffusion MRI in Neuroimaging

Recent advances in artificial intelligence provide a new era of opportunities for new methodologies to address challenges in diffusion MRI. Large open source labelled data sets and open source code for emerging frameworks provide opportunities to train diffusion MRI models to drive efficiencies in acquisition and reconstruction and augment clinical decision making. This is particularly pertinent in the case of interpretability of diffusion MRI, which is significantly more computationally expensive and challenging than conventional MRI in diagnosis and prediction of neurological disorders.

We encourage the submission of scientific papers (original research, reviews, perspectives, etc.) focused on machine learning and artificial intelligence with clinical applicability for diagnosis and prediction.

For more information:

neurology@frontiersin.org

fro.ntiers.in/Vf14

TOPIC EDITORS

Kathleen Curran, University College Dublin, Ireland

Daan Christiaens, KU Leuven, Belgium

Eleftheria Panagiotaki, University College London, UK

Paddy Slator, Univeristy College London, UK

Screen Shot 2021-05-11 at 14.33.04.png

LATEST PUBLICATION!

Enterprise imaging and big data: A review from a medical physics perspective

Abstract: In recent years enterprise imaging (EI) solutions have become a core component of healthcare initiatives, while a simultaneous rise in big data has opened up a number of possibilities in how we can analyze and derive insights from large amounts of medical data. Together they afford us a range of opportunities that can transform healthcare in many fields. This paper provides a review of recent developments in EI and big data in the context of medical physics. It summarizes the key aspects of EI and big data in practice, with discussion and consideration of the steps necessary to implement an EI strategy. It examines the benefits that a healthcare service can achieve through the implementation of an EI solution by looking at it through the lenses of: compliance, improving patient care, maximizing revenue, optimizing workflows, and applications of artificial intelligence that support enterprise imaging. It also addresses some of the key challenges in enterprise imaging, with discussion and examples presented for those in systems integration, governance, and data security and privacy.

WhatsApp Image 2021-05-12 at 14.40.21.jp

FUSION Exemplar Award 2019 

In partnership with Axial Medical Printing Ltd. Dr Kathleen Curran and Mr John Fitzpatrick were awarded the 2019 InterTrade Ireland FUSION Project Exemplar Award. Mr Fitzpatrick is now a PhD student ML-Labs (cohort 1).